
Wikiprint Book

Title: The Trac Ticket Workflow System

Subject: TechTIDE-Wiki - TracWorkflow

Version: 1

Date: 05/17/24 02:32:51



WikiPrint - from Polar Technologies

2

Table of Contents

The Trac Ticket Workflow System 3

The Default Ticket Workflow 3

Additional Ticket Workflows 3

Basic Ticket Workflow Customization 3

Ticket Create Action 4

Ticket Reset Action 4

Workflow Visualization 4

Example: Adding optional Testing with Workflow 5

Example: Add simple optional generic review state 5

Advanced Ticket Workflow Customization 6

Adding Workflow States to Milestone Progress Bars 6

Ideas for next steps 6



WikiPrint - from Polar Technologies

3

The Trac Ticket Workflow System

The Trac ticket system provides a configurable workflow.

The Default Ticket Workflow

When a new environment is created, a default workflow is configured in your trac.ini. This workflow is the basic workflow, as specified in

■basic-workflow.ini:

Enable JavaScript to display the workflow graph.

Additional Ticket Workflows

There are example workflows provided in the Trac source tree, see ■contrib/workflow for .ini config sections. One of those may be a good match for

what you want. They can be pasted into the [ticket-workflow] section of your trac.ini file. However, if you have existing tickets then there may

be issues if those tickets have states that are not in the new workflow.

Here are some ■diagrams of the above examples.

Basic Ticket Workflow Customization

Note: Ticket "statuses" or "states" are not separately defined. The states a ticket can be in are automatically generated by the transitions defined in a

workflow. Therefore, creating a new ticket state simply requires defining a state transition in the workflow that starts or ends with that state.

In the [ticket-workflow] section of trac.ini, each entry is an action that may be taken on a ticket. For example, consider the accept action

from simple-workflow.ini:

accept = new,accepted -> accepted

accept.permissions = TICKET_MODIFY

accept.operations = set_owner_to_self

The first line in this example defines the accept action, along with the states the action is valid in (new and accepted), and the new state of the ticket

when the action is taken (accepted).

The accept.permissions line specifies the permissions the user must have to use this action. ■ExtraPermissionsProvider can define new

permissions to be used here.

The accept.operations line specifies changes that will be made to the ticket in addition to the status change when the action is taken. In this case,

when a user clicks on accept, the ticket owner field is updated to the logged in user. Multiple operations may be specified in a comma separated list.

The available operations are:

• del_owner -- Clears the owner field.

set_owner -- Sets the owner to the selected or entered owner. Defaults to the current user. When [ticket] restrict_owner = true, the

select will be populated with users that have TICKET_MODIFY permission and an authenticated session.

• actionname.set_owner may optionally specify a comma delimited list of users that will be used to populate the select, or a single user. Groups

and permissions may also be included in the list (Since 1.1.3). When groups or permissions are specified the select is populated with all members

of the group or all users that possess the permission.

• set_owner_to_self -- Sets the owner to the logged in user.

• may_set_owner -- Sets the owner to the selected or entered owner. Defaults to the existing owner. (Since 1.1.2).

• del_resolution -- Clears the resolution field.

set_resolution -- Sets the resolution to the selected value.

actionname.set_resolution may optionally be set to a comma delimited list or a single value. Example:

resolve_new = new -> closed

resolve_new.label = resolve

resolve_new.operations = set_resolution

resolve_new.permissions = TICKET_MODIFY

resolve_new.set_resolution = invalid,wontfix

• leave_status -- Displays "leave as <current status>" and makes no change to the ticket.

http://trac.edgewall.org/intertrac/source%3A/trunk/trac/ticket/workflows/basic-workflow.ini
http://trac.edgewall.org/intertrac/source%3Atrunk/contrib/workflow
http://trac.edgewall.org/intertrac/WorkFlow/Examples
http://trac.edgewall.org/intertrac/ExtraPermissionsProvider


WikiPrint - from Polar Technologies

4

• reset_workflow -- Resets the status of tickets that are in states no longer defined.

Note: Specifying conflicting operations, such as set_owner and del_owner, has unspecified results.

The example that follows demonstrates the .label attribute. The action here is resolve_accepted, but it will be presented to the user as resolve.

resolve_accepted = accepted -> closed

resolve_accepted.label = resolve

resolve_accepted.permissions = TICKET_MODIFY

resolve_accepted.operations = set_resolution

The .label attribute is new in Trac 1.1.3 and is functionally the same as the .name attribute, which is now deprecated. If neither .label or .name

is specified, the action will be presented to the user as resolve accepted, the underscores having been replaced by whitespace (Since 1.1.3).

For actions that should be available in all states, * may be used in place of the state. The obvious example is the leave action:

leave = * -> *

leave.operations = leave_status

leave.default = 1

This also shows the use of the .default attribute. This value is expected to be an integer, and the order in which the actions are displayed is

determined by this value. The action with the highest .default value is listed first, and is selected by default. The rest of the actions are listed in order

of decreasing .default values. If not specified for an action, .default is 0. The value may be negative.

There is one hard-coded constraint to the workflow: tickets are expected to have a closed state. The default reports/queries treat any state other than

closed as an open state.

Ticket Create Action

The ticket create actions are specified by a transition from the special <none> state. At least one create action must be available to the user in order for

tickets to be created. The create actions defined in the default workflow are:

create = <none> -> new

create.default = 1

create_and_assign = <none> -> assigned

create_and_assign.label = assign

create_and_assign.permissions = TICKET_MODIFY

create_and_assign.operations = may_set_owner

Ticket Reset Action

The special _reset action is added by default for tickets that are in states that are no longer defined. This allows tickets to be individually "repaired"

after the workflow is changed, although it's recommended that the administrator perform the action by batch modifying the affected tickets. By default the

_reset action is available to users with the TICKET_ADMIN permission and reset tickets are put in the new state. The default _reset action is

equivalent to the following [ticket-workflow] action definition:

_reset = -> new

_reset.label = reset

_reset.operations = reset_workflow

_reset.permissions = TICKET_ADMIN

_reset.default = 0

Since ■milestone:1.0.3 the _reset action can be customized by redefining the implicit action. For example, to allow anyone with TICKET_MODIFY to

perform the _reset action, the workflow action would need to be defined:

_reset = -> new

_reset.label = reset

_reset.operations = reset_workflow

_reset.permissions = TICKET_MODIFY

_reset.default = 0

Workflow Visualization

http://trac.edgewall.org/intertrac/milestone%3A1.0.3


WikiPrint - from Polar Technologies

5

Workflows can be visualized by rendering them on the wiki using the Workflow macro.

Workflows can also be visualized using the contrib/workflow/workflow_parser.py script. The script outputs .dot files that ■GraphViz

understands. The script can be used as follows (your install path may be different):

$ cd /var/local/trac_devel/contrib/workflow/

$ ./showworkflow /srv/trac/PlannerSuite/conf/trac.ini

The script outputs trac.pdf in the same directory as the trac.ini file.

Example: Adding optional Testing with Workflow

The following adds a testing action. When the ticket has status new, accepted or needs_work, you can choose to submit it for testing. When it's in

the testing status the user gets the option to reject it and send it back to needs_work, or pass the testing and send it along to closed. If they accept it,

then it is automatically marked as closed and the resolution is set to fixed. Since all the old work flow remains, a ticket can skip this entire section.

testing = new,accepted,needs_work,assigned,reopened -> testing

testing.label = Submit to reporter for testing

testing.permissions = TICKET_MODIFY

reject = testing -> needs_work

reject.label = Failed testing, return to developer

pass = testing -> closed

pass.label = Passes Testing

pass.operations = set_resolution

pass.set_resolution = fixed

Example: Add simple optional generic review state

Sometimes Trac is used in situations where "testing" can mean different things to different people so you may want to create an optional workflow state

that is between the default workflow's assigned and closed states, but does not impose implementation-specific details. The only new state you

need to add for this is a reviewing state. A ticket may then be "submitted for review" from any state that it can be reassigned. If a review passes, you

can re-use the resolve action to close the ticket, and if it fails you can re-use the reassign action to push it back into the normal workflow.

The new reviewing state along with its associated review action looks like this:

review = new,assigned,reopened -> reviewing

review.operations = set_owner

review.permissions = TICKET_MODIFY

To integrate this with the default workflow, you also need to add the reviewing state to the accept and resolve actions:

accept = new,reviewing -> assigned

[…]

resolve = new,assigned,reopened,reviewing -> closed

Optionally, you can also add a new action that allows you to change the ticket's owner without moving the ticket out of the reviewing state. This

enables you to reassign review work without pushing the ticket back to the new status:

reassign_reviewing = reviewing -> *

reassign_reviewing.label = reassign review

reassign_reviewing.operations = set_owner

reassign_reviewing.permissions = TICKET_MODIFY

The full [ticket-workflow] configuration will be:

[ticket-workflow] 

create = <none> -> new 

create.default = 1 

create_and_assign = <none> -> assigned 

create_and_assign.label = assign 

create_and_assign.permissions = TICKET_MODIFY

https://techtide-wiki.space.noa.gr/wiki/WikiMacros#Workflow-macro
http://www.graphviz.org


WikiPrint - from Polar Technologies

6

create_and_assign.operations = may_set_owner 

accept = new,reviewing -> assigned 

accept.operations = set_owner_to_self 

accept.permissions = TICKET_MODIFY 

leave = * -> * 

leave.default = 1 

leave.operations = leave_status 

reassign = new,assigned,accepted,reopened -> assigned 

reassign.operations = set_owner 

reassign.permissions = TICKET_MODIFY 

reopen = closed -> reopened 

reopen.operations = del_resolution 

reopen.permissions = TICKET_CREATE 

resolve = new,assigned,reopened,reviewing -> closed 

resolve.operations = set_resolution 

resolve.permissions = TICKET_MODIFY 

review = new,assigned,reopened -> reviewing 

review.operations = set_owner 

review.permissions = TICKET_MODIFY 

reassign_reviewing = reviewing -> * 

reassign_reviewing.operations = set_owner 

reassign_reviewing.label = reassign review 

reassign_reviewing.permissions = TICKET_MODIFY

Advanced Ticket Workflow Customization

If the customizations above do not meet your needs, you can extend the workflow with plugins. Plugins can provide additional operations for the

workflow, like code_review, or implement side-effects for an action, such as triggering a build, that may not be merely simple state changes. Look at

■sample-plugins/workflow for a few examples to get started.

But if even that is not enough, you can disable the ConfigurableTicketWorkflow component and create a plugin that completely replaces it. See also the

■AdvancedTicketWorkflowPlugin, which provides additional operations.

Adding Workflow States to Milestone Progress Bars

If you add additional states to your workflow, you may want to customize your milestone progress bars as well. See the [milestone-groups] section.

Ideas for next steps

Enhancement ideas for the workflow system should be filed as enhancement tickets against the ■ticket system component. You can also document

ideas on the ■TracIdeas/TracWorkflow page.

http://trac.edgewall.org/intertrac/source%3Atrunk/sample-plugins/workflow
https://trac-hacks.org/wiki/AdvancedTicketWorkflowPlugin
https://techtide-wiki.space.noa.gr/wiki/TracIni#milestone-groups-section
http://trac.edgewall.org/intertrac/query%3A%3Fstatus%3Dassigned%26status%3Dnew%26status%3Dreopened%26keywords%3D%7Eworkflow%26component%3Dticket%2Bsystem
http://trac.edgewall.org/intertrac/TracIdeas/TracWorkflow

	The Trac Ticket Workflow System
	The Default Ticket Workflow
	Additional Ticket Workflows
	Basic Ticket Workflow Customization
	Ticket Create Action
	Ticket Reset Action

	Workflow Visualization
	Example: Adding optional Testing with Workflow
	Example: Add simple optional generic review state
	Advanced Ticket Workflow Customization
	Adding Workflow States to Milestone Progress Bars
	Ideas for next steps


