
Wikiprint Book

Title: Trac with FastCGI

Subject: TechTIDE-Wiki - TracFastCgi

Version: 1

Date: 11/25/25 04:57:33

WikiPrint - from Polar Technologies

2

Table of Contents

Trac with FastCGI 3

Apache configuration 3

Set up with mod_fastcgi 3

Set up with mod_fcgid 3

Alternative environment setup 4

Cherokee Configuration 4

Lighttpd Configuration 4

LiteSpeed Configuration 7

Nginx Configuration 8

WikiPrint - from Polar Technologies

3

Trac with FastCGI

■FastCGI interface allows Trac to remain resident much like with mod_python or mod_wsgi. It is faster than external CGI interfaces which must start a

new process for each request. Additionally, it is supported by a much wider variety of web servers.

Note that unlike mod_python, FastCGI supports ■Apache SuEXEC, ie run with different permissions than the web server runs with. mod_wsgi supports

the WSGIDaemonProcess with user / group parameters to achieve the same effect.

Note for Windows: Trac's FastCGI does not run under Windows, as Windows does not implement Socket.fromfd, which is used by _fcgi.py. If

you want to connect to IIS, you may want to try ■AJP/■ISAPI.

Apache configuration

There are two FastCGI modules commonly available for Apache: mod_fastcgi and mod_fcgid (preferred). The latter is more up-to-date.

The following sections focus on the FCGI specific setup, see also TracModWSGI for configuring the authentication in Apache.

Regardless of which cgi module is used, be sure the web server has executable permissions on the cgi-bin folder. While FastCGI will throw specific

permissions errors, mod_fcgid will throw an ambiguous error if this has not been done: Connection reset by peer: mod_fcgid: error

reading data from FastCGI server.

Set up with mod_fastcgi

mod_fastcgi uses FastCgiIpcDir and FastCgiConfig directives that should be added to an appropriate Apache configuration file:

Enable fastcgi for .fcgi files

(If you're using a distro package for mod_fcgi, something like

this is probably already present)

<IfModule mod_fastcgi.c>

 AddHandler fastcgi-script .fcgi

 FastCgiIpcDir /var/lib/apache2/fastcgi

</IfModule>

LoadModule fastcgi_module /usr/lib/apache2/modules/mod_fastcgi.so

Setting FastCgiIpcDir is optional if the default is suitable. Note that the LoadModule line must be after the IfModule group.

Configure ScriptAlias or similar options as described in TracCgi, but calling trac.fcgi instead of trac.cgi.

Add the following to the Apache configuration file (below the FastCgiIpcDir line) if you intend to set up the TRAC_ENV as an overall default:

FastCgiConfig -initial-env TRAC_ENV=/path/to/env/trac

Alternatively, you can serve multiple Trac projects in a directory by adding this:

FastCgiConfig -initial-env TRAC_ENV_PARENT_DIR=/parent/dir/of/projects

You can also specify the PYTHON_EGG_CACHE environment variable using a second -initial-env directive:

FastCgiConfig -initial-env TRAC_ENV=/var/lib/trac \

 -initial-env PYTHON_EGG_CACHE=/var/lib/trac/plugin-cache

Set up with mod_fcgid

Configure ScriptAlias (see TracCgi for details), but call trac.fcgi instead of trac.cgi:

ScriptAlias /trac /path/to/www/trac/cgi-bin/trac.fcgi/

Note the slash at the end.

To set up Trac environment for mod_fcgid it is necessary to use DefaultInitEnv directive. It cannot be used in Directory or Location

context, so if you need to support multiple projects, try the alternative environment setup below:

DefaultInitEnv TRAC_ENV /path/to/env/trac/

http://www.fastcgi.com/
https://techtide-wiki.space.noa.gr/wiki/TracModPython
https://techtide-wiki.space.noa.gr/wiki/TracModWSGI
http://httpd.apache.org/docs/suexec.html
http://trac.edgewall.org/intertrac/TracOnWindowsIisAjp
http://trac.edgewall.org/intertrac/TracOnWindowsIisAjp
https://techtide-wiki.space.noa.gr/wiki/TracModWSGI#ConfiguringAuthentication
https://techtide-wiki.space.noa.gr/wiki/TracCgi
https://techtide-wiki.space.noa.gr/wiki/TracCgi

WikiPrint - from Polar Technologies

4

Alternative environment setup

A better method to specify the path to the Trac environment is to embed the path into trac.fcgi script itself. That doesn't require configuration of the

server environment variables, works for both ■FastCgi modules as well as for ■lighttpd and CGI:

import os

os.environ['TRAC_ENV'] = "/path/to/projectenv"

or:

import os

os.environ['TRAC_ENV_PARENT_DIR'] = "/path/to/project/parent/dir"

With this method different projects can be supported by using different .fcgi scripts with different ScriptAliases.

See ■this fcgid example config which uses a ScriptAlias directive with trac.fcgi with a trailing / like this:

ScriptAlias / /srv/tracsite/cgi-bin/trac.fcgi/

Cherokee Configuration

Configuring ■Cherokee with Trac is straightforward, if you spawn Trac as an SCGI process. You can either start it manually, or better yet, automatically

by letting Cherokee spawn the server whenever it is down.

First set up an information source in cherokee-admin with a local interpreter:

Host:

localhost:4433

Interpreter:

/usr/bin/tracd —single-env —daemonize —protocol=scgi —hostname=localhost —port=4433 /path/to/project/

If the port was not reachable, the interpreter command would be launched. Note that, in the definition of the information source, you will have to manually

launch the spawner if you use a Remote host as Information source instead of a Local interpreter.

After doing this, we will just have to create a new rule managed by the SCGI handler to access Trac. It can be created in a new virtual server,

trac.example.net for instance, and will only need two rules. The default one will use the SCGI handler associated to the previously created information

source. The second rule will be there to serve the few static files needed to correctly display the Trac interface. Create it as Directory rule for /common

and just set it to the Static files handler and with a Document root that points to the appropriate files: $TRAC_LOCAL/htdocs/ (where $TRAC_LOCAL is a

directory defined by the user or the system administrator to place local Trac resources).

Note: If the tracd process fails to start up, and Cherokee displays a 503 error page, you might be missing the ■python-flup package (■#9903).

Python-flup is a dependency which provides Trac with SCGI capability. You can install it on Debian based systems with:

sudo apt-get install python-flup

Lighttpd Configuration

The FastCGI front-end was developed primarily for use with alternative webservers, such as ■Lighttpd.

Lighttpd is a secure, fast, compliant and very flexible web-server that has been optimized for high-performance environments. It has a very low memory

footprint compared to other web servers and takes care of CPU load.

For using trac.fcgi(prior to 0.11) / fcgi_frontend.py (0.11) with Lighttpd add the following to your lighttpd.conf:

#var.fcgi_binary="/usr/bin/python /path/to/fcgi_frontend.py" # 0.11 if installed with easy_setup, it is inside the egg directory

var.fcgi_binary="/path/to/cgi-bin/trac.fcgi" # 0.10 name of prior fcgi executable

fastcgi.server = ("/trac" =>

 ("trac" =>

 ("socket" => "/tmp/trac-fastcgi.sock",

 "bin-path" => fcgi_binary,

http://trac.edgewall.org/intertrac/FastCgi
http://www.lighttpd.net/
https://coderanger.net/~coderanger/httpd/fcgi_example.conf
http://cherokee-project.com/
http://trac.saddi.com/flup
http://trac.edgewall.org/intertrac/%239903
http://www.lighttpd.net/

WikiPrint - from Polar Technologies

5

 "check-local" => "disable",

 "bin-environment" =>

 ("TRAC_ENV" => "/path/to/projenv")

)

)

)

Note that you will need to add a new entry to fastcgi.server for each separate Trac instance that you wish to run. Alternatively, you may use the

TRAC_ENV_PARENT_DIR variable instead of TRAC_ENV as described above, and you may set one of the two in trac.fcgi instead of in

lighttpd.conf using bin-environment, as in the section above on Apache configuration.

Note that Lighttpd has a bug related to 'SCRIPT_NAME' and 'PATH_INFO' when the uri of fastcgi.server is '/' instead of '/trac' in this example (see

■#2418). This is fixed in Lighttpd 1.5, and under Lighttpd 1.4.23 or later the workaround is to add "fix-root-scriptname" => "enable" as a

parameter of fastcgi.server.

For using two projects with lighttpd add the following to your lighttpd.conf:

fastcgi.server = ("/first" =>

 ("first" =>

 ("socket" => "/tmp/trac-fastcgi-first.sock",

 "bin-path" => fcgi_binary,

 "check-local" => "disable",

 "bin-environment" =>

 ("TRAC_ENV" => "/path/to/projenv-first")

)

),

 "/second" =>

 ("second" =>

 ("socket" => "/tmp/trac-fastcgi-second.sock",

 "bin-path" => fcgi_binary,

 "check-local" => "disable",

 "bin-environment" =>

 ("TRAC_ENV" => "/path/to/projenv-second")

)

)

)

Note that the field values are different. If you prefer setting the environment variables in the .fcgi scripts, then copy/rename trac.fcgi, eg to

first.fcgi and second.fcgi, and reference them in the above settings. Note that the above will result in different processes in any event, even if

both are running from the same trac.fcgi script.

Note: The order in which the server.modules are loaded is very important: if mod_auth is not loaded before mod_fastcgi, then the server will fail to

authenticate the user.

For authentication you should enable mod_auth in lighttpd.conf 'server.modules', select auth.backend and auth rules:

server.modules = (

...

 "mod_auth",

...

)

auth.backend = "htpasswd"

Separated password files for each project

See "Conditional Configuration" in

http://trac.lighttpd.net/trac/file/branches/lighttpd-merge-1.4.x/doc/configuration.txt

$HTTP["url"] =~ "^/first/" {

 auth.backend.htpasswd.userfile = "/path/to/projenv-first/htpasswd.htaccess"

}

http://trac.edgewall.org/intertrac/%232418

WikiPrint - from Polar Technologies

6

$HTTP["url"] =~ "^/second/" {

 auth.backend.htpasswd.userfile = "/path/to/projenv-second/htpasswd.htaccess"

}

Enable auth on trac URLs, see

http://trac.lighttpd.net/trac/file/branches/lighttpd-merge-1.4.x/doc/authentication.txt

auth.require = ("/first/login" =>

 ("method" => "basic",

 "realm" => "First project",

 "require" => "valid-user"

),

 "/second/login" =>

 ("method" => "basic",

 "realm" => "Second project",

 "require" => "valid-user"

)

)

Note that Lighttpd (v1.4.3) stops if the password file doesn't exist.

Note that Lighttpd doesn't support 'valid-user' in versions prior to 1.3.16.

Conditional configuration is also useful for mapping static resources, ie serving out images and CSS directly instead of through FastCGI:

Aliasing functionality is needed

server.modules += ("mod_alias")

Set up an alias for the static resources

alias.url = ("/trac/chrome/common" => "/usr/share/trac/htdocs")

Use negative lookahead, matching all requests that ask for any resource under /trac, EXCEPT in

/trac/chrome/common, and use FastCGI for those

$HTTP["url"] =~ "^/trac(?!/chrome/common)" {

Even if you have other fastcgi.server declarations for applications other than Trac, do NOT use += here

fastcgi.server = ("/trac" =>

 ("trac" =>

 ("socket" => "/tmp/trac-fastcgi.sock",

 "bin-path" => fcgi_binary,

 "check-local" => "disable",

 "bin-environment" =>

 ("TRAC_ENV" => "/path/to/projenv")

)

)

)

}

The technique can be easily adapted for use with multiple projects by creating aliases for each of them, and wrapping the fastcgi.server declarations

inside conditional configuration blocks.

Also there is another way to handle multiple projects and it uses TRAC_ENV_PARENT_DIR instead of TRAC_ENV as well as global authentication:

This is for handling multiple projects

 alias.url = ("/trac/" => "/path/to/trac/htdocs/")

 fastcgi.server += ("/projects" =>

 ("trac" =>

 (

 "socket" => "/tmp/trac.sock",

 "bin-path" => fcgi_binary,

WikiPrint - from Polar Technologies

7

 "check-local" => "disable",

 "bin-environment" =>

 ("TRAC_ENV_PARENT_DIR" => "/path/to/parent/dir/of/projects/")

)

)

)

#And here starts the global auth configuration

 auth.backend = "htpasswd"

 auth.backend.htpasswd.userfile = "/path/to/unique/htpassword/file/trac.htpasswd"

 $HTTP["url"] =~ "^/projects/.*/login$" {

 auth.require = ("/" =>

 (

 "method" => "basic",

 "realm" => "trac",

 "require" => "valid-user"

)

)

 }

Changing date/time format also supported by lighttpd over environment variable LC_TIME:

fastcgi.server = ("/trac" =>

 ("trac" =>

 ("socket" => "/tmp/trac-fastcgi.sock",

 "bin-path" => fcgi_binary,

 "check-local" => "disable",

 "bin-environment" =>

 ("TRAC_ENV" => "/path/to/projenv",

 "LC_TIME" => "ru_RU")

)

)

)

For details about languages specification see ■TracFaq question 2.13.

Other important information like the mapping static resources advices are useful for non-fastcgi specific installation aspects.

Relaunch Lighttpd and browse to http://yourhost.example.org/trac to access Trac.

Note about running Lighttpd with reduced permissions: If nothing else helps and trac.fcgi doesn't start with Lighttpd settings server.username =

"www-data", server.groupname = "www-data", then in the bin-environment section set PYTHON_EGG_CACHE to the home directory of

www-data or some other directory accessible to this account for writing.

LiteSpeed Configuration

The FastCGI front-end was developed primarily for use with alternative webservers, such as ■LiteSpeed.

LiteSpeed web server is an event-driven asynchronous Apache replacement designed from the ground-up to be secure, scalable, and operate with

minimal resources. LiteSpeed can operate directly from an Apache config file and is targeted for business-critical environments.

i. Please make sure you have a working install of a Trac project. Test install with "tracd" first.

ii. Create a Virtual Host for this setup. From now on we will refer to this vhost as TracVhost. For this tutorial we will be assuming that your Trac project

will be accessible via:

http://yourdomain.com/trac/

iii. Go "TracVhost → External Apps" tab and create a new "External Application":

Name: MyTracFCGI

Address: uds://tmp/lshttpd/mytracfcgi.sock

http://trac.edgewall.org/intertrac/TracFaq
https://techtide-wiki.space.noa.gr/wiki/TracInstall#MappingStaticResources
http://www.litespeedtech.com/

WikiPrint - from Polar Technologies

8

Max Connections: 10

Environment: TRAC_ENV=/fullpathto/mytracproject/ <--- path to root folder of trac project

Initial Request Timeout (secs): 30

Retry Timeout (secs): 0

Persistent Connection Yes

Connection Keepalive Timeout: 30

Response Bufferring: No

Auto Start: Yes

Command: /usr/share/trac/cgi-bin/trac.fcgi <--- path to trac.fcgi

Back Log: 50

Instances: 10

iv. Optional: If you need to use htpasswd based authentication. Go to "TracVhost → Security" tab and create a new security Realm:

DB Type: Password File

Realm Name: MyTracUserDB <--- any name you wish and referenced later

User DB Location: /fullpathto/htpasswd <--- path to your htpasswd file

If you don’t have a htpasswd file or don’t know how to create the entries within one, go to ■http://sherylcanter.com/encrypt.php, to generate the

user:password combos.

v. Go to "PythonVhost → Contexts" and create a new FCGI Context:

URI: /trac/ <--- URI path to bind to python fcgi app we created

Fast CGI App: [VHost Level] MyTractFCGI <--- select the Trac fcgi extapp we just created

Realm: TracUserDB <--- only if (4) is set. select realm created in (4)

Modify /fullpathto/mytracproject/conf/trac.ini:

#find/set base_rul, url, and link variables

base_url = http://yourdomain.com/trac/ <--- base url to generate correct links to

url = http://yourdomain.com/trac/ <--- link of project

link = http://yourdomain.com/trac/ <--- link of graphic logo

vii. Restart LiteSpeed: lswsctrl restart, and access your new Trac project at http://yourdomain.com/trac/.

Nginx Configuration

■Nginx is able to communicate with FastCGI processes, but can not spawn them. So you need to start FastCGI server for Trac separately.

i. Nginx configuration with basic authentication handled by Nginx - confirmed to work on 0.6.32

 server {

 listen 10.9.8.7:443;

 server_name trac.example;

 ssl on;

 ssl_certificate /etc/ssl/trac.example.crt;

 ssl_certificate_key /etc/ssl/trac.example.key;

 ssl_session_timeout 5m;

 ssl_protocols SSLv2 SSLv3 TLSv1;

 ssl_ciphers ALL:!ADH:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SSLv2:+EXP;

 ssl_prefer_server_ciphers on;

 # it makes sense to serve static resources through Nginx (or ``~ [/some/prefix]/chrome/(.*)``)

 location ~ /chrome/(.*) {

 alias /home/trac/instance/static/htdocs/$1;

 }

http://sherylcanter.com/encrypt.php
http://nginx.org/en/

WikiPrint - from Polar Technologies

9

 # You can copy this whole location to ``location [/some/prefix](/login)``

 # and remove the auth entries below if you want Trac to enforce

 # authorization where appropriate instead of needing to authenticate

 # for accessing the whole site.

 # (Or ``~ location /some/prefix(/.*)``.)

 location ~ (/.*) {

 auth_basic "trac realm";

 auth_basic_user_file /home/trac/htpasswd;

 # socket address

 fastcgi_pass unix:/home/trac/run/instance.sock;

 # python - wsgi specific

 fastcgi_param HTTPS on;

 ## WSGI REQUIRED VARIABLES

 # WSGI application name - trac instance prefix.

 # (Or ``fastcgi_param SCRIPT_NAME /some/prefix``.)

 fastcgi_param SCRIPT_NAME "";

 fastcgi_param PATH_INFO $1;

 ## WSGI NEEDED VARIABLES - trac warns about them

 fastcgi_param REQUEST_METHOD $request_method;

 fastcgi_param SERVER_NAME $server_name;

 fastcgi_param SERVER_PORT $server_port;

 fastcgi_param SERVER_PROTOCOL $server_protocol;

 fastcgi_param QUERY_STRING $query_string;

 # For Nginx authentication to work - do not forget to comment these

 # lines if not using Nginx for authentication

 fastcgi_param AUTH_USER $remote_user;

 fastcgi_param REMOTE_USER $remote_user;

 # for ip to work

 fastcgi_param REMOTE_ADDR $remote_addr;

 # For attchments to work

 fastcgi_param CONTENT_TYPE $content_type;

 fastcgi_param CONTENT_LENGTH $content_length;

 }

 }

ii. Modified trac.fcgi:

#!/usr/bin/env python

import os

sockaddr = '/home/trac/run/instance.sock'

os.environ['TRAC_ENV'] = '/home/trac/instance'

try:

 from trac.web.main import dispatch_request

 import trac.web._fcgi

 fcgiserv = trac.web._fcgi.WSGIServer(dispatch_request,

 bindAddress = sockaddr, umask = 7)

 fcgiserv.run()

except SystemExit:

 raise

except Exception, e:

 print 'Content-Type: text/plain\r\n\r\n',

 print 'Oops...'

WikiPrint - from Polar Technologies

10

 print

 print 'Trac detected an internal error:'

 print

 print e

 print

 import traceback

 import StringIO

 tb = StringIO.StringIO()

 traceback.print_exc(file=tb)

 print tb.getvalue()

iii. Reload nginx and launch trac.fcgi:

trac@trac.example ~ $./trac-standalone-fcgi.py

The above assumes that:

• There is a user named 'trac' for running Trac instances and keeping Trac environments in its home directory

• /home/trac/instance contains a Trac environment

• /home/trac/htpasswd contains authentication information

/home/trac/run is owned by the same group the Nginx runs under

• and if your system is Linux the /home/trac/run has setgid bit set (chmod g+s run)

• and patch from ■#7239 is applied, or you'll have to fix the socket file permissions every time

Unfortunately Nginx does not support variable expansion in fastcgi_pass directive. Thus it is not possible to serve multiple Trac instances from one

server block.

If you worry enough about security, run Trac instances under separate users.

Another way to run Trac as a FCGI external application is offered in ■#6224.

See also: TracGuide, TracInstall, ModWSGI, CGI, ModPython, ■TracNginxRecipe

http://trac.edgewall.org/intertrac/%237239
http://trac.edgewall.org/intertrac/%236224
https://techtide-wiki.space.noa.gr/wiki/TracGuide
https://techtide-wiki.space.noa.gr/wiki/TracInstall
https://techtide-wiki.space.noa.gr/wiki/TracModWSGI
https://techtide-wiki.space.noa.gr/wiki/TracCgi
https://techtide-wiki.space.noa.gr/wiki/TracModPython
http://trac.edgewall.org/intertrac/TracNginxRecipe

	Trac with FastCGI
	Apache configuration
	Set up with mod_fastcgi
	Set up with mod_fcgid
	Alternative environment setup

	Cherokee Configuration
	Lighttpd Configuration
	LiteSpeed Configuration
	Nginx Configuration

