
Fine grained permissions
There is a general mechanism in place that allows custom permission policies to grant or deny any action on
any Trac resource, or even specific versions of a resource.

That mechanism is authz_policy, which is an optional module in tracopt.perm.authz_policy.*, so it is
installed by default. It can be activated via the Plugins panel in the Trac administration module.

Permission Policies

A great diversity of permission policies can be implemented and Trac comes with a few examples.

The active policies are determined by a configuration setting:

#ReadonlyWikiPolicy controls readonly access to wiki pages.•
DefaultPermissionPolicy checks for the traditional coarse-grained permissions described in
TracPermissions.

•

LegacyAttachmentPolicy uses the coarse-grained permissions to check permissions on attachments.•

Among the optional choices, there is #AuthzPolicy, a very generic permission policy, based on an Authz-style
system. See ?authz_policy.py for details.

Another permission policy #AuthzSourcePolicy, uses the ?path-based authorization defined by Subversion to
enforce permissions on the version control system.

See also ?sample-plugins/permissions for more examples.

AuthzPolicy

Configuration

Put a ?conf file in a secure location on the server, not readable by users other than the webuser. If the
file contains non-ASCII characters, the UTF-8 encoding should be used.

•

Update your trac.ini:
modify the permission_policies entry in the [trac] section:1.

add a new [authz_policy] section and point the authz_file option to the conf file:2.

enable the plugin through WebAdmin or by editing the [components] section:3.

•

Usage Notes

Note the order in which permission policies are specified: policies are implemented in the sequence provided
and therefore may override earlier policy specifications.

Fine grained permissions 1

http://trac.edgewall.org/intertrac/source%3Abranches/1.2-stable/tracopt/perm/authz_policy.py
http://svnbook.red-bean.com/nightly/en/svn.serverconfig.pathbasedauthz.html
http://trac.edgewall.org/intertrac/source%3Abranches/1.2-stable/sample-plugins/permissions
http://swapoff.org/files/authzpolicy.conf

A policy will return either True, False or None for a given permission check. True is returned if the policy
explicitly grants the permission. False is returned if the policy explicitly denies the permission. None is
returned if the policy is unable to either grant or deny the permission.

NOTE: Only if the return value is None will the next permission policy be consulted. If none of the policies
explicitly grants the permission, the final result will be False, i.e. permission denied.

The authzpolicy.conf file is a .ini style configuration file:

Each section of the config is a glob pattern used to match against a Trac resource descriptor. These
descriptors are in the form:

<realm>:<id>@<version>[/<realm>:<id>@<version> ...]

•

Resources are ordered left to right, from parent to child. If any component is inapplicable, * is substituted. If
the version pattern is not specified explicitly, all versions (@*) is added implicitly. Example: Match the
WikiStart page:

Example: Match the attachment wiki:WikiStart@117/attachment:FOO.JPG@* on WikiStart:

Sections are checked against the current Trac resource descriptor IN ORDER of appearance in the
configuration file. ORDER IS CRITICAL.

•

Once a section matches, the current username is matched against the keys (usernames) of the section,
IN ORDER.

If a key (username) is prefixed with a @, it is treated as a group.♦
If a value (permission) is prefixed with a !, the permission is denied rather than granted.♦

•

Note: Other groups which are created by user (e.g. by 'adding subjects to groups' on web interface page
Admin / Permissions) cannot be used. See ?#5648 for details about this missing feature.
For example, if the authz_file contains:

and the default permissions are set like this:

Usage Notes 2

http://trac.edgewall.org/intertrac/ticket%3A5648

john WIKI_VIEW
jack WIKI_VIEW
anonymous has no WIKI_VIEW

Then:

All versions of WikiStart will be viewable by everybody, including anonymous•
PrivatePage will be viewable only by john•
other pages will be viewable only by john and jack•

Groups:

Then:

everything is blocked (whitelist approach), but•
admins get all TRAC_ADMIN everywhere and•
devs can view wiki pages.•

Some repository examples (Browse Source specific):

Very granular repository access:

Usage Notes 3

Note: In order for Timeline to work/visible for John, we must add CHANGESET_VIEW to the above
permission list.

Missing Features

Although possible with the DefaultPermissionPolicy handling (see Admin panel), fine-grained permissions
still miss those grouping features (see ?#9573, ?#5648). Patches are partially available, see
authz_policy.2.patch, part of ?#6680.

You cannot do the following:

Permission groups are not supported either, so you cannot do the following:

AuthzSourcePolicy (mod_authz_svn-like permission policy)

AuthzSourcePolicy can be used for restricting access to the repository. Granular permission control needs a
definition file, which is the one used by Subversion's mod_authz_svn. More information about this file format
and about its usage in Subversion is available in the ?Path-Based Authorization section in the Server
Configuration chapter of the svn book.

Example:

/ = Everyone has read access by default•
/branches/calc/bug-142 = harry has read/write access, sally read only•
/branches/calc/bug-142/secret = harry has no access, sally has read access (inherited as a sub folder
permission)

•

Missing Features 4

http://trac.edgewall.org/intertrac/ticket%3A9573
http://trac.edgewall.org/intertrac/ticket%3A5648
http://trac.edgewall.org/intertrac/ticket%3A6680
http://svnbook.red-bean.com/en/1.7/svn.serverconfig.pathbasedauthz.html

Trac Configuration

To activate granular permissions you must specify the authz_file option in the [svn] section of trac.ini. If
this option is set to null or not specified, the permissions will not be used.

If you want to support the use of the [modulename:/some/path] syntax within the authz_file, add:

where modulename refers to the same repository indicated by the <name>.dir entry in the [repositories]
section. As an example, if the somemodule.dir entry in the [repositories] section is
/srv/active/svn/somemodule, that would yield the following:

where the svn access file, /path/to/svnaccessfile, contains entries such as [somemodule:/some/path].

Note: Usernames inside the Authz file must be the same as those used inside trac.

As of version 0.12, make sure you have AuthzSourcePolicy included in the permission_policies list in trac.ini,
otherwise the authz permissions file will be ignored.

Subversion Configuration

The same access file is typically applied to the corresponding Subversion repository using an Apache
directive like this:

 svn

For information about how to restrict access to entire projects in a multiple project environment see
?wiki:TracMultipleProjectsSVNAccess.

ReadonlyWikiPolicy?

Since 1.1.2, the read-only attribute of wiki pages is enabled and enforced when ReadonlyWikiPolicy is in the
list of active permission policies. The default for new Trac installations in 1.1.2 and later is:

[trac]

Trac Configuration 5

http://trac.edgewall.org/intertrac/wiki%3ATracMultipleProjectsSVNAccess

permission_policies = ReadonlyWikiPolicy,
 DefaultPermissionPolicy,
 LegacyAttachmentPolicy

When upgrading from earlier versions of Trac, ReadonlyWikiPolicy will be appended to the list of
permission_policies when upgrading the environment, provided that permission_policies has the
default value. If any non-default permission_polices are active, ReadonlyWikiPolicy will need to be
manually added to the list. A message will be echoed to the console when upgrading the environment,
indicating if any action needs to be taken.

ReadonlyWikiPolicy must be listed before DefaultPermissionPolicy. The latter returns True to allow
modify, delete or rename actions when the user has the respective WIKI_* permission, without consideration
for the read-only attribute.

The ReadonlyWikiPolicy returns False to deny modify, delete and rename actions on wiki pages when the
page has the read-only attribute set and the user does not have WIKI_ADMIN, regardless of WIKI_MODIFY,
WIKI_DELETE and WIKI_RENAME permissions. It returns None for all other cases.

When active, the #AuthzPolicy should therefore come before ReadonlyWikiPolicy, allowing it to grant or
deny the actions on individual resources, which is the usual ordering for AuthzPolicy in the
permission_policies list.

[trac]
permission_policies = AuthzPolicy,
 ReadonlyWikiPolicy,
 DefaultPermissionPolicy,
 LegacyAttachmentPolicy

The placement of #AuthzSourcePolicy relative to ReadonlyWikiPolicy does not matter since they don't
perform checks on the same realms.

For all other permission policies, the user will need to decide the proper ordering. Generally, if the permission
policy should be capable of overriding the check performed by ReadonlyWikiPolicy, it should come before
ReadonlyWikiPolicy in the list. If the ReadonlyWikiPolicy should override the check performed by another
permission policy, as is the case for DefaultPermissionPolicy, then ReadonlyWikiPolicy should come
first.

Debugging permissions

In trac.ini set:

Display the trac.log to understand what checks are being performed:

tail -n -f log/trac.log egrep

See the sourced documentation of the plugin for more info.

ReadonlyWikiPolicy? 6

See also: TracPermissions, ?TracHacks:FineGrainedPageAuthzEditorPlugin for a simple editor plugin.

Debugging permissions 7

http://trac-hacks.org/wiki/FineGrainedPageAuthzEditorPlugin

	tmpCKvMzhwikitopdf

