Wikiprint Book

Title: Trac plugins

Subject: TechTIDE-Wiki - TracPlugins
Version: 1

Date: 11/25/25 03:27:46

WikiPrint - from Polar Technologies

Table of Contents

Trac plugins
Plugin discovery
Installing a Trac plugin
For a single project
For all projects
With an .egg file
From source
Enabling the plugin
Upgrading the environment
Redeploying static resources
Upgrading a Plugin
Uninstalling
Setting up the plugin cache
Web-based plugin administration
Troubleshooting
Is setuptools properly installed?
Did you get the correct version of the Python egg?
Is the plugin enabled?
Check the permissions on the .egg file
Check the log files
Verify you have the proper permissions
Is the wrong version of the plugin loading?
If all of the above failed

O o000 0O 0 oaoOOhs BB DDOWOWWWWW

WikiPrint - from Polar Technologies

Trac plugins

Trac is extensible with m plugins. Plugin functionality is based on the mcomponent architecture, with special cases described in the m plugin development
page.

Plugin discovery

From the user's point of view, a plugin is either a standalone .py file or a package (egg or wheel). Trac looks for plugins in Python's si t e- packages
directory, the global shared pl ugi ns directory and the project environment pl ugi ns directory. Components defined in globally-installed plugins must
be explicitly enabled in the_ [components] section of the t r ac. i ni file. Components defined in the pl ugi ns directory of the project environment are
enabled, unless explicitly disabled in the [conponent s] section of thetrac. i ni file.

Installing a Trac plugin

The instructions below are applicable to a plugin packaged as an egg. Plugins implemented as a single py file should be downloaded and copied to the
project environment pl ugi ns directory or the global shared plugins directory.

For a single project
If you have downloaded a source distribution of a plugin, and want to build the . egg file:

* Unpack the source. It should provide set up. py.

* Run:

$ python setup. py bdist_egg

You should now have an *.egg file. Examine the output of running Python to find where this was created.

Once you have the plugin archive, copy it into the pl ugi ns directory of the project environment. Also, make sure that the web server has sufficient
permissions to read the plugin egg. Then restart the web server. If you are running as a "tracd" standalone server, restart tracd, ie kill the process and

run again.
To uninstall a plugin installed this way, remove the egg from the pl ugi ns directory and restart the web server.

Note: the Python version that the egg is built with must match the Python version with which Trac is run. For example, if you are running Trac under
Python 2.6, but have upgraded your standalone Python to 2.7, the eggs won't be recognized.

Note: in a multi-project setup, a pool of Python interpreter instances will be dynamically allocated to projects based on need; since plugins occupy a
place in Python's module system, the first version of any given plugin to be loaded will be used for all projects. In other words, you cannot use different
versions of a single plugin in two projects of a multi-project setup. It may be safer to install plugins for all projects (see below), and then enable them
selectively on a project-by-project basis.

For all projects

With an .egg file

Some plugins, such as mTracTags, are downloadable as an . egg file that can be installed with easy_i nstal | or pi p:
$ easy_install TracTags

$ pip install TracTags

If easy_i nstal | is not on your system, see the m Trac setuptools documentation.

pi p is included in Python 2.7.9. In earlier versions of Python it can be installed through the package manager of your OS (e.g. apt - get install
pyt hon- pi p) or using the mget pip.py.

If Trac reports permission errors after installing a zipped egg, and you would rather not bother providing an egg cache directory writable by the web
server, you can get around it by simply unzipping the egg. Just pass - - al ways- unzi ptoeasy_instal | :

$ easy_install --always-unzip TracTags

http://trac.edgewall.org/intertrac/PluginList
http://trac.edgewall.org/intertrac/TracDev/ComponentArchitecture
http://trac.edgewall.org/intertrac/TracDev/PluginDevelopment
https://techtide-wiki.space.noa.gr/wiki/TracIni#GlobalConfiguration
https://techtide-wiki.space.noa.gr/wiki/TracEnvironment
https://techtide-wiki.space.noa.gr/wiki/TracIni#components-section
https://techtide-wiki.space.noa.gr/wiki/TracEnvironment
https://techtide-wiki.space.noa.gr/wiki/TracIni#GlobalConfiguration
https://techtide-wiki.space.noa.gr/wiki/TracEnvironment
https://techtide-wiki.space.noa.gr/wiki/TracStandalone
https://trac-hacks.org/wiki/TagsPlugin
http://trac.edgewall.org/intertrac/setuptools%23Installsetuptools
https://pip.pypa.io/en/latest/installing.html#install-pip

WikiPrint - from Polar Technologies

You should end up with a directory having the same name as the zipped egg, complete with . egg extension, and containing its uncompressed contents.

Trac also searches for plugins installed in the shared plugins directory, see Traclni#GlobalConfiguration. This is a convenient way to share the
installation of plugins across several, but not all, environments.

From source

easy_i nstal |l and pi p make installing from source a snap. Just give it the URL to either a repository or a tarball/zip of the source:
$ easy_install https://trac-hacks.org/svn/tagspl ugin/trunk

$ pip install svn+https://trac-hacks. org/svn/tagsplugin/trunk

When installing from a repository using pi p, be sure to use the repository type in the protocol. For example, svn+ht t ps for Subversion and
gi t +ht t ps for Git.

Enabling the plugin

Unlike plugins installed per environment, you'll have to explicitly enable globally installed plugins via trac.ini. This also applies to plugins installed in the
shared plugins directory, ie the path specified in the [inherit] plugins_dir configuration option.

This is done in the [components] section of the configuration file t r ac. i ni . For example:

[component s]
tractags.* = enabl ed

The name of the option is the Python package of the plugin. This should be specified in the documentation of the plugin, but can also be easily
discovered by looking at the source: look for a top-level directory that contains a file named __init__. py.

After installing the plugin, you must restart your web server.
Upgrading the environment

Some plugins may require an environment upgrade. This will typically be necessary for plugins that implement | Envi r onment Set upPar ti ci pant .
Common reasons for requiring an environment upgrade are to add tables to the database or add configuration parameters to trac.ini. A notification will be
displayed when accessing Trac for the first time after installing a plugin and restarting the web server. To upgrade the environment, run the command:

$ trac-admn /path/to/env upgrade

A database backup will be made before upgrading the environment, unless the - - no- backup option is specified. For more information, refer to the
documentation output by t r ac- admi n / pat h/ t o/ env hel p upgr ade.

Redeploying static resources

If you mapped static resources so they are served by the web server, and the plugin contains static resources (CSS, JavaScript and image files), the
resources will need to be deployed to the location on the filesystem that is served by the web server.

Execute the depl oy command, as was done during install and upgrade:
$ trac-admin /path/to/env deploy /deploy/path

After executing the command, you must restart your web server.

Note: Some web browsers (IE, Opera) cache CSS and Javascript files, so you should instruct your users to manually erase the contents of their
browser's cache. A forced refreshed (SHIFT + <F5>) should be enough.

Upgrading a Plugin
Normally, upgrading a plugin is simply a matter of repeating the install process. You may want to uninstall old versions of the plugin.

The pi p i nstall command has an - - upgrade (-U) switch that will uninstall the old version and install the new version. The command can have
some unintended side-effects though, because it will also upgrade the plugin dependencies. For example, if Tr ac is listed as a dependency of the plugin
in set up. py, the latest version of Trac will be downloaded and installed. This may not be what you want if you are running an older version of Trac
because not all your plugins are compatible with the latest version of Trac, or you simply haven't done the appropriate planning for upgrading Trac.
Uninstalling and then installing the plugin can be a safer option:

https://techtide-wiki.space.noa.gr/wiki/TracIni#GlobalConfiguration
https://techtide-wiki.space.noa.gr/wiki/TracIni
https://techtide-wiki.space.noa.gr/wiki/TracIni#inherit-plugins_dir-option
https://techtide-wiki.space.noa.gr/wiki/TracIni#components-section
https://techtide-wiki.space.noa.gr/wiki/TracInstall#MappingStaticResources
https://techtide-wiki.space.noa.gr/wiki/TracUpgrade#a5.Refreshstaticresources
https://techtide-wiki.space.noa.gr/wiki/TracPlugins#Uninstalling

WikiPrint - from Polar Technologies

$ pip uninstall <pluginname>
$ pip install <plugi nname>

Alternatively you can use a ®mrequirements file and pin the versions of the packages that you don't want to implicitly upgrade.
Uninstalling

pi p makes it easy to uninstall a plugin:

$ pip uninstall <pluginnanme>

The pi p uni nstal | command can be used even if the plugin was installed using easy_i nst al | or pyt hon setup.py install.

Neither easy_i nstal | nor pyt hon set up. py have an uninstall feature. However, it is usually trivial to remove a globally installed egg and
reference:

i. Doeasy_install -m <plugin name>toremove references from $PYTHONLI B/ si t e- packages/ easy-i nstal | . pt h when the plugin is
installed by setuptools.

ii. Delete executables from / usr/ bi n,/usr/1ocal/bin,orC\\Python*\ Scri pts. To find what executables are involved, refer to the
[consol e-scri pt] section of set up. py.

iii. Delete the .egg file or folder from where it's installed, usually inside $PYTHONLI B/ si t e- packages/ .
iv. Restart the web server.

If you are uncertain about the location of the egg file, you can try to locate it by replacing mypl ugi n with whatever namespace the plugin uses (as used
when enabling the plugin):

>>> jnport myplugin

>>> print nmyplugin.__file__
/opt/1 ocal / pyt hon24/1i b/ site-packages/ nypl ugi n-0. 4. 2-py2. 4. egg/ nyplugin/ __init__.pyc

Setting up the plugin cache
Some plugins will need to be extracted by the Python egg's runtime. See Traclnstall for information on setting up the egg cache.
Web-based plugin administration

The WebAdmin interface offers limited support for plugin configuration to users with TRAC_ADM N permission:

* enabling and disabling installed plugins

« installing plugins by uploading them as eggs
If you wish to disable the second function for security reasons, add the following to your t r ac. i ni file:

[component s]
trac. adm n. web_ui . Pl ugi nAdm nPanel = di sabl ed

This disables the whole panel, so the first function will no longer be available either.
Troubleshooting

Is setuptools properly installed?

Try this from the command line:

$ python -c "inport pkg_resources”

If you get no output, setuptools is installed. Otherwise, you'll need to install it before plugins will work in Trac.
Did you get the correct version of the Python egg?

Python eggs have the Python version encoded in their filename. For example, MyPl ugi n- 1. 0- py2. 5. egg is an egg for Python 2.5, and will not be
loaded if you're running a different Python version (such as 2.4 or 2.6).

https://pip.pypa.io/en/stable/user_guide/#requirements-files
https://techtide-wiki.space.noa.gr/wiki/TracInstall#egg-cache

WikiPrint - from Polar Technologies

Also, verify that the egg file you downloaded is indeed a .zip archive. If you downloaded it from a Trac site, chances are you downloaded the HTML
preview page instead.

Is the plugin enabled?

If you install a plugin globally, ie not inside the pl ugi ns directory of the Trac project environment, you must explicitly enable it in trac.ini. Make sure
that:

« you actually added the necessary line(s) to the [conponent s] section.
» the package/module names are correct and do not contain typos.
+ the value is "enabled", not "enable" or "Enable".

» the section name is "components", not "component".

Check the permissions on the .egg file

Trac must be able to read the .egg file.

Check the log files

Enable logging and set the log level to DEBUG, then watch the log file for messages about loading plugins.
Verify you have the proper permissions

Some plugins require you have special permissions in order to use them. WebAdmin, for example, requires the user to have TRAC_ADM N permissions
for it to show up on the navigation bar.

Is the wrong version of the plugin loading?

If you put your plugins inside the pl ugi ns directories, and certainly if you have more than one project, you need to make sure that the correct version of
the plugin is loading. Here are some basic rules:

* Only one version of the plugin can be loaded for each running Trac server, ie each Python process. The Python namespaces and module list will be
shared, and it cannot handle duplicates. Whether a plugin is enabl ed or di sabl ed makes no difference.

* Aglobally installed plugin (typically set up. py i nstal |) will override any version in the global or project plugins directories. A plugin from the global
plugins directory will be located before any project plugins directory.

» If your Trac server hosts more than one project (as with TRAC_ENV_PARENT_DI R setups), having two versions of a plugin in two different projects
will give unpredicatable results. Only one of them will load, and the one loaded will be shared by both projects. Trac will load the first plugin found,
usually from the project that receives the first request.

* Having more than one version listed inside Python site-packages is fine, ie installed with set up. py i nstal | , because setuptools will make sure
you get the version installed most recently. However, don't store more than one version inside a global or project plugins directory: neither the version
number nor the installed date will matter at all. There is no way to determine which one will be located first when Trac searches the directory for
plugins.

If all of the above failed

Okay, so the logs don't mention plugins, the egg is readable, the Python version is correct, and the egg has been installed globally (and is enabled in
trac.ini)... and it still doesn't work or give any error messages or any other indication as to why. Hop on the mIrcChannel or m MailingList and ask away!

See also TracGuide, mplugin list, mcomponent architecture.

https://techtide-wiki.space.noa.gr/wiki/TracIni
https://techtide-wiki.space.noa.gr/wiki/TracLogging
http://trac.edgewall.org/intertrac/IrcChannel
http://trac.edgewall.org/intertrac/MailingList
https://techtide-wiki.space.noa.gr/wiki/TracGuide
http://trac.edgewall.org/intertrac/PluginList
http://trac.edgewall.org/intertrac/TracDev/ComponentArchitecture

	Trac plugins
	Plugin discovery
	Installing a Trac plugin
	For a single project
	For all projects
	With an .egg file
	From source
	Enabling the plugin
	Upgrading the environment
	Redeploying static resources
	Upgrading a Plugin
	Uninstalling

	Setting up the plugin cache
	Web-based plugin administration
	Troubleshooting
	Is setuptools properly installed?
	Did you get the correct version of the Python egg?
	Is the plugin enabled?
	Check the permissions on the .egg file
	Check the log files
	Verify you have the proper permissions
	Is the wrong version of the plugin loading?
	If all of the above failed

