
Repository Administration

Quick start

Enable the repository connector(s) for the version control system(s) that you will use.•
Add repositories through the Repositories admin panel, with trac-admin or in the [repositories]
section of trac.ini.

•

Set up a call to trac-admin $ENV changeset added $REPO $REV in the post-commit hook of each
repository. Additionally, add a call to trac-admin $ENV changeset modified $REPO $REV in the
post-revprop-change hook of repositories allowing revision property changes.

•

Make sure the user under which your hooks are run has write access to the Trac environment, or use a
tool like sudo to temporarily elevate privileges.

•

Enabling the components

Support for version control systems is provided by optional components distributed with Trac, which are
disabled by default (since 1.0). Subversion and Git must be explicitly enabled if you wish to use them.

The version control systems can be enabled by adding the following to the [components] section of your
trac.ini, or enabling the components in the Plugins admin panel.

Specifying repositories

Trac supports multiple repositories per environment, and the repositories may be for different version control
system types. Each repository must be defined in a repository configuration provider, the two supported by
default are the database store and the trac.ini configuration file. A repository should not be defined in multiple
configuration providers.

It is possible to define aliases of repositories, that act as "pointers" to real repositories. This can be useful
when renaming a repository, to avoid breaking links to the old name.

A number of attributes can be associated with each repository. The attributes define the repository's location,
type, name and how it is displayed in the source browser. The following attributes are supported:

Attribute Description

alias

A repository having an alias attribute is an alias to a real repository. All TracLinks
referencing the alias resolve to the aliased repository. Note that multiple indirection is
not supported, so an alias must always point to a real repository. The alias and dir
attributes are mutually exclusive.

description
The text specified in the description attribute is displayed below the top-level entry for
the repository in the source browser. It supports WikiFormatting.

dir The dir attribute specifies the location of the repository in the filesystem. It corresponds
to the value previously specified in the option [trac] repository_dir. The alias and

Repository Administration 1

dir attributes are mutually exclusive.

hidden

When set to true, the repository is hidden from the repository index page in the source
browser. Browsing the repository is still possible, and links referencing the repository
remain valid.

sync_per_request

When set to true the repository will be synced on every request. This is not
recommended, instead a post-commit hook should be configured to provide explicit
synchronization and sync_per_request should be set to false.

type

The type attribute sets the type of version control system used by the repository. Trac
supports Subversion and Git out-of-the-box, and plugins add support for many other
systems. If type is not specified, it defaults to the value of the [trac]
repository_type option.

url

The url attribute specifies the root URL to be used for checking out from the repository.
When specified, a "Repository URL" link is added to the context navigation links in the
source browser, that can be copied into the tool used for creating the working copy.

A repository name and one of alias or dir attributes are mandatory. All others are optional.

For some version control systems, it is possible to specify not only the path to the repository in the dir
attribute, but also a scope within the repository. Trac will then only show information related to the files and
changesets below that scope. The Subversion backend for Trac supports this. For other types, check the
corresponding plugin's documentation.

After adding a repository, the cache for that repository must be re-synchronized once with the trac-admin
$ENV repository resync command.

repository resync <repos>

Re-synchronize Trac with a repository.

In trac.ini

Repositories and repository attributes can be specified in the [repositories] section of trac.ini. Every
attribute consists of a key structured as {name}.{attribute} and the corresponding value separated with an
equal sign (=). The name of the default repository is empty.

The main advantage of specifying repositories in trac.ini is that they can be inherited from a global
configuration (see the global configuration section of TracIni). One drawback is that, due to limitations in the
ConfigParser class used to parse trac.ini, the repository name is always all-lowercase.

The following example defines two Subversion repositories named project and lib, and an alias to project
as the default repository. This is a typical use case where a Trac environment previously had a single
repository (the project repository), and was converted to multiple repositories. The alias ensures that links
predating the change continue to resolve to the project repository.

Specifying repositories 2

Note that name.alias = target makes name an alias for the target repo, not the other way around.

In the database

Repositories can also be specified in the database, using either the "Repositories" admin panel under "Version
Control", or the trac-admin $ENV repository commands.

The admin panel shows the list of all repositories defined in the Trac environment. It allows adding
repositories and aliases, editing repository attributes and removing repositories. Note that repositories defined
in trac.ini are displayed but cannot be edited.

The following trac-admin commands can be used to perform repository operations from the command line.

repository add <repos> <dir> [type]

Add a repository <repos> located at <dir>, and optionally specify its type.

repository alias <name> <target>

Create an alias <name> for the repository <target>.

repository remove <repos>

Remove the repository <repos>.

repository set <repos> <key> <value>

Set the attribute <key> to <value> for the repository <repos>.

Note that the default repository has an empty name, so it will likely need to be quoted when running
trac-admin from a shell. Alternatively, the name "(default)" can be used instead, for example when
running trac-admin in interactive mode.

Repository caching

The Subversion and Git repository connectors support caching, which improves the performance browsing the
repository, viewing logs and viewing changesets. Cached repositories must be synchronized; either explicit or
implicit synchronization can be used. When searching changesets, only cached repositories are searched.

Subversion repositories are cached unless the type is direct-svnfs. Git repositories are cached when [git]
cached_repository is true.

Repository synchronization

Prior to 0.12, Trac synchronized its cache with the repository on every HTTP request. This approach is not
very efficient and not practical anymore with multiple repositories. For this reason, explicit synchronization
through post-commit hooks was added.

There is also new functionality in the form of a repository listener extension point
(IRepositoryChangeListener) that is triggered by the post-commit hook when a changeset is added or

In trac.ini 3

modified, and can be used by plugins to perform actions on commit.

Mercurial Repositories

Please note that at the time of writing, no initial resynchronization or any hooks are necessary for Mercurial
repositories - see ?#9485 for more information.

Explicit synchronization

This is the preferred method of repository synchronization. It requires setting the sync_per_request attribute
to false, and adding a call to trac-admin in the post-commit hook of each repository. Additionally, if a
repository allows changing revision metadata, a call to trac-admin must be added to the
post-revprop-change hook as well.

changeset added <repos> <rev> [?]

Notify Trac that one or more changesets have been added to a repository.

changeset modified <repos> <rev> [?]

Notify Trac that metadata on one or more changesets in a repository has been modified.

The <repos> argument can be either a repository name (use "(default)" for the default repository) or the
path to the repository.

Note that you may have to set the environment variable PYTHON_EGG_CACHE to the same value as was used for
the web server configuration before calling trac-admin, if you changed it from its default location. See Trac
Plugins for more information.

Subversion

Using trac-svn-hook

In a Unix environment, the simplest way to configure explicit synchronization is by using the
?contrib/trac-svn-hook script. trac-svn-hook starts trac-admin asynchronously to avoid slowing the commit
and log editing operations. The script comes with a number of safety checks and usage advice. Output is
written to a log file with prefix svn-hooks- in the environment log directory, which can make configuration
issues easier to debug.

There's no equivalent trac-svn-hook.bat for Windows yet, but the script can be run by Cygwin's bash.

Follow the help in the documentation header of the script to configure trac-svn-hook. Configuring the hook
environment variables is made easier in Subversion 1.8 by using the ?hook script environment configuration.
Rather than directly editing trac-svn-hook to set the environment variables, they can be configured through
the repository conf/hooks-env file. Replace the ?configuration section with:

:
:

and set the variables TRAC_ENV, PYTHON_BIN and PYTHON_LIB in the hooks-env file. Here is an example, using
a Python virtual environment at /usr/local/venv:

Repository synchronization 4

http://trac.edgewall.org/intertrac/%239485
http://trac.edgewall.org/intertrac/source%3Atrunk/contrib/trac-svn-hook
http://svnbook.red-bean.com/en/1.8/svn.reposadmin.create.html#svn.reposadmin.hooks.configuration
http://trac.edgewall.org/intertrac/source%3Atrunk/contrib/trac-svn-hook%40%3A65-67%23L61

Writing Your Own Hook Script

The following examples are complete post-commit and post-revprop-change scripts for Subversion. They
should be edited for the specific environment, marked executable (where applicable) and placed in the hooks
directory of each repository. On Unix (post-commit):

/usr/bin/trac-admin /path/to/env changeset added

Note: Check with whereis trac-admin, whether trac-admin is really installed under /usr/bin/ or maybe
under /usr/local/bin/ and adapt the path. On Windows (post-commit.cmd):

C:\Python26\Scripts\trac-admin.exe C:\path\to\env changeset added

The post-revprop-change hook for Subversion is very similar. On Unix (post-revprop-change):

/usr/bin/trac-admin /path/to/env changeset modified

On Windows (post-revprop-change.cmd):

C:\Python26\Scripts\trac-admin.exe C:\path\to\env changeset modified

The Unix variants above assume that the user running the Subversion commit has write access to the Trac
environment, which is the case in the standard configuration where both the repository and Trac are served by
the web server. If you access the repository through another means, for example svn+ssh://, you may have
to run trac-admin with different privileges, for example by using sudo.

See the ?section about hooks in the Subversion book for more information. Other repository types will require
different hook setups.

Git

Git hooks can be used in the same way for explicit syncing of Git repositories. If your git repository is one
that gets committed to directly on the machine that hosts trac, add the following to the hooks/post-commit
file in your git repo (note: this will do nothing if you only update the repo by pushing to it):

git rev-parse HEAD
trac-admin /path/to/env changeset added <repos>

Alternately, if your repository is one that only gets pushed to, add the following to the hooks/post-receive
file in the repo:

/path/to/env oldrev newrev refname

 git rev-list --reverse --

 git rev-list --reverse --
 xargs trac-admin changeset added

Using trac-svn-hook 5

http://svnbook.red-bean.com/en/1.7/svn.reposadmin.create.html#svn.reposadmin.create.hooks

The <repos> argument can be either a repository name (use "(default)" for the default repository) or the
path to the repository.

Mercurial

For Mercurial, add the following entries to the .hgrc file of each repository accessed by Trac (if
?TracMercurial is installed in a Trac plugins directory, download ?hooks.py and place it somewhere
accessible):

Per-request synchronization

If the post-commit hooks are not available, the environment can be set up for per-request synchronization. In
that case, the sync_per_request attribute for each repository in the database and in trac.ini must be set to
false.

Note that in this case, the changeset listener extension point is not called, and therefore plugins using it will
not work correctly.

Automatic changeset references in tickets

You can automatically add a reference to the changeset as a ticket comment whenever changes are committed
to the repository. The description of the commit needs to contain one of the following formulas:

Refs #123 - to reference this changeset in #123 ticket•
Fixes #123 - to reference this changeset and close #123 ticket with the default status fixed•

This functionality requires installing a post-commit hook as described in #ExplicitSync, and enabling the
optional commit updater components by adding the following line to the [components] section of your
trac.ini, or enabling the components in the Plugins admin panel.

For more information, see the documentation of the CommitTicketUpdater component in the Plugins admin
panel and the ?CommitTicketUpdater page.

Troubleshooting

Git 6

http://trac.edgewall.org/intertrac/TracMercurial
http://trac.edgewall.org/intertrac/source%3Amercurial-plugin/tracext/hg/hooks.py
http://trac.edgewall.org/intertrac/CommitTicketUpdater

My trac-post-commit-hook doesn't work anymore

You must now use the optional components from tracopt.ticket.commit_updater.*, which you can
activate through the Plugins panel in the Administrative part of the web interface, or by directly modifying the
[components] section in the trac.ini. Be sure to use explicit synchronization as explained above.

See ?CommitTicketUpdater#Troubleshooting for more troubleshooting tips.

My trac-post-commit-hook doesn't work anymore 7

http://trac.edgewall.org/intertrac/CommitTicketUpdater%23Troubleshooting

	tmpWfgFLEwikitopdf

