Wiki Processors

Processors are WikiMacros designed to provide alternative markup formats for the Wiki engine. Processors
can be thought of as macro functions to process user-edited text.

Wiki processors can be used in any Wiki text throughout Trac, such as:

e syntax highlighting or for rendering text verbatim

¢ rendering Wiki markup inside a context, like inside <div> blocks or or within <td> or <th>
table cells

e using an alternative markup syntax, like raw HTML and Restructured Text or 2textile

Using Processors

To use a processor on a block of text, first delimit the lines using a Wiki code block:

{{{
The lines
that should be processed...

138

Immediately after the { { { or on the line just below, add #! followed by the processor name:

{{{

!processorname

The lines

that should be processed...

11}
This is the "shebang" notation, familiar to most UNIX users.
Besides their content, some Wiki processors can also accept parameters, which are then given as key=value
pairs after the processor name and on the same line. If value has to contain space, as it's often the case for the

style parameter, a quoted string can be used (key="value with space").

As some processors are meant to process Wiki markup, it's quite possible to nest processor blocks. You may
want to indent the content of nested blocks for increased clarity, this extra indentation will be ignored when
processing the content.

Examples

Wiki Markup | Display

Example 1: Inserting raw HTML

A This is raw HTML

<hl style="color: grey">This is raw HTML</hl>
P}

Example 2: Highlighted Python code in a <div> block with custom style

{{{#!div style="background: #ffd; border: 3px ridge" |This is an example of embedded "code"

This is raw HTML

http://www.textism.com/tools/textile/

This is an example of embedded "code" block: block:

{{{

#!python

def hello():
return "world"

138

138

Example 3: Searching tickets from a wiki page, by keywords.

{{{

#'!'html

<form action="/query" method="get"><div>

<input type="text" name="keywords" value="~" size="30"/>
<input type="submit" value="Search by Keywords"/>

<!-- To control what fields show up use hidden fields

<input type="hidden" name="col" value="id"/>

<input type="hidden" name="col" value="summary"/>
<input type="hidden" name="col" value="status"/>
<input type="hidden" name="col" value="milestone"/>
<input type="hidden" name="col" value="version"/>
<input type="hidden" name="col" value="owner"/>
<input type="hidden" name="col" value="priority"/>
<input type="hidden" name="col" value="component"/>
——>

</div></form>

138

Available Processors

The following processors are included in the Trac distribution:

#1default Present the text verbatim in a preformatted text block. This is the same as specifying no
processor name (and no #!).

#1 comment. Do not process the text in this section, i.e. contents exist only in the plain text - not in
the rendered page.

1ol Introduce a Right-To-Left block with appropriate CSS direction and styling. (since
0.12.2)

HTML related

#'html Insert custom HTML in a wiki page.

#!htmlcomment Insert an HTML comment in a wiki page. (since 0.12)
Note that # !html blocks have to be self-contained, i.e. you can't start an HTML element
in one block and close it later in a second block. Use the following processors for
achieving a similar effect.

#!div 'Wrap wiki content inside a <div> element.

#!span Wrap wiki content inside a element.

#td Wrap wiki content inside a <td> element. (since 0.12)

#1th Wrap wiki content inside a <th> element. (since 0.12)

$rer Can optionally be used for wrapping #!td and #!th blocks, either for specifying row
attributes or better visual grouping. (since 0.12)

Available Processors 2

Can optionally be used for wrapping #!tr, #!td and # ! th blocks, for specifying table
#!table . e e . . ;
attributes. One current limitation however is that tables cannot be nested. (since 0.12)
See WikiHtml for example usage and more details about these processors.
Other Markups
#lrst Trac support for Restructured Text. See WikiRestructuredText.
#ltextile Supported if 2Textile is installed. See 2a Textile reference.
Code Highlighting Support
#lc
#'!cpp (C++)
#!python
#!perl
#!ruby Trac includes processors to provide inline syntax highlighting for source code in various
#!php languages.
#lasp
#!java Trac relies on 2Pygments for syntax coloring.
#!3s (Javascript)
#!sql See TracSyntaxColoring for information about which languages are supported and how
#1xml1 (XML or to enable support for more languages.
HTML)
#'!sh (Bourne/Bash
shell)
etc.

Since 1.1.2 the default, coding highlighting and MIME-type processors support the argument 1ineno for
adding line numbering to the code block. When a value is specified, as in 1ineno=3, the numbering will start
at the specified value. When used in combination with the 1ineno argument, the marks argument is also
supported for highlighting lines. A single line number, set of line numbers and range of line numbers are
allowed. For example, marks=3, marks=3-6, marks=3, 5, 7 and marks=3-5, 7 are all allowed. The specified
values are relative to the numbered lines, so if 1ineno=2 is specified to start the line numbering at 2, marks=2
will result in the first line being highlighted.

Using the MIME type as processor, it is possible to syntax-highlight the same languages that are supported
when browsing source code.

MIME Type Processors

Some examples:
The result will be syntax highlighted HTML code:

{{{#'text/html
<hl>text</hl> text

11}

The same is valid for all other mime types supported.

{{{#'!diff

—-—— Version 55

+++ Version 56

@@ -115,8 +115,9 @@
name='TracHelloWorld', version='1.0",
packages=find_packages (exclude=["'*.tests*']),

= entry_points = """

= [trac.plugins]

= helloworld = myplugs.helloworld

Available Processors 3

http://cheeseshop.python.org/pypi/textile
http://www.textism.com/tools/textile/
http://pygments.org

nun
’

1,

+ 4+ o+

by
)
138

entry_points = {
'trac.plugins': [
'helloworld = myplugs.helloworld',

#1diff has a particularly nice renderer:

*Version
115 115 name="TracHelloWorld', version="1.0',
116 116 packages=find_packages(exclude=["*.tests*']),
117 entry_points = """
118 [trac.plugins]
119 helloworld = myplugs.helloworld
120
117 entry_points = {
118 'trac.plugins’: [
119 'helloworld = myplugs.helloworld',
120 1,
121},
121 122)

Line numbers can be added to code blocks and lines can be highlighted (since 1.1.2).

{{{#!python lineno=3 marks=3,9-10,16
def expand_markup (stream, ctxt=None):
"""A Genshi stream filter for expanding "genshi.Markup® events.

Note: Expansion may not be possible if the fragment is badly

formed,

or partial.

for event in stream:
if isinstance(event[1l], Markup) :

else:
yield event

P}

Line

I = W

Version

try:

for subevent in HTML (event[1]) :
yield subevent

except ParseError:

yield event

def expand_markup(stream, ctxt=None):
"""A Genshi stream filter for expanding ~genshi.Markup™ events.

Note: Expansion may not be possible if the fragment is badly
formed, or partial.
for event in stream:
if isinstance(event[1], Markup):
try:
for subevent in HTML(event[1]):
yield subevent
except ParseError:
yield event

else:

REEEBRREIE®®RKNIE

yield event
For more processor macros developed and/or contributed by users, visit the 2Trac Hacks community site.

Developing processors is no different from Wiki macros. In fact, they work the same way, only the usage
syntax differs. See WikiMacros#DevelopingCustomMacros for more information.

See also: WikiMacros, WikiHtml, WikiRestructuredText, TracSyntaxColoring, WikiFormatting, TracGuide

Version

https://trac-hacks.org

	tmps3skqDwikitopdf

