
Wiki Processors
Processors are WikiMacros designed to provide alternative markup formats for the Wiki engine. Processors
can be thought of as macro functions to process user-edited text.

Wiki processors can be used in any Wiki text throughout Trac, such as:

syntax highlighting or for rendering text verbatim•
rendering Wiki markup inside a context, like inside <div> blocks or or within <td> or <th>
table cells

•

using an alternative markup syntax, like raw HTML and Restructured Text or ?textile•

Using Processors

To use a processor on a block of text, first delimit the lines using a Wiki code block:

{{{
The lines
that should be processed...
}}}

Immediately after the {{{ or on the line just below, add #! followed by the processor name:

{{{
#!processorname
The lines
that should be processed...
}}}

This is the "shebang" notation, familiar to most UNIX users.

Besides their content, some Wiki processors can also accept parameters, which are then given as key=value
pairs after the processor name and on the same line. If value has to contain space, as it's often the case for the
style parameter, a quoted string can be used (key="value with space").

As some processors are meant to process Wiki markup, it's quite possible to nest processor blocks. You may
want to indent the content of nested blocks for increased clarity, this extra indentation will be ignored when
processing the content.

Examples

Wiki Markup Display
Example 1: Inserting raw HTML

{{{
#!html
<h1 style="color: grey">This is raw HTML</h1>
}}}

This is raw HTML

Example 2: Highlighted Python code in a <div> block with custom style
{{{#!div style="background: #ffd; border: 3px ridge" This is an example of embedded "code"

This is raw HTML 1

http://www.textism.com/tools/textile/

This is an example of embedded "code" block:

 {{{
 #!python
 def hello():
 return "world"
 }}}

}}}

block:

Example 3: Searching tickets from a wiki page, by keywords.

{{{
#!html
<form action="/query" method="get"><div>
<input type="text" name="keywords" value="~" size="30"/>
<input type="submit" value="Search by Keywords"/>
<!-- To control what fields show up use hidden fields
<input type="hidden" name="col" value="id"/>
<input type="hidden" name="col" value="summary"/>
<input type="hidden" name="col" value="status"/>
<input type="hidden" name="col" value="milestone"/>
<input type="hidden" name="col" value="version"/>
<input type="hidden" name="col" value="owner"/>
<input type="hidden" name="col" value="priority"/>
<input type="hidden" name="col" value="component"/>
-->
</div></form>
}}}

Available Processors

The following processors are included in the Trac distribution:

#!default
Present the text verbatim in a preformatted text block. This is the same as specifying no
processor name (and no #!).

#!comment
Do not process the text in this section, i.e. contents exist only in the plain text - not in
the rendered page.

#!rtl
Introduce a Right-To-Left block with appropriate CSS direction and styling. (since
0.12.2)

HTML related
#!html Insert custom HTML in a wiki page.
#!htmlcomment Insert an HTML comment in a wiki page. (since 0.12)

Note that #!html blocks have to be self-contained, i.e. you can't start an HTML element
in one block and close it later in a second block. Use the following processors for
achieving a similar effect.

#!div Wrap wiki content inside a <div> element.
#!span Wrap wiki content inside a element.
#!td Wrap wiki content inside a <td> element. (since 0.12)
#!th Wrap wiki content inside a <th> element. (since 0.12)

#!tr
Can optionally be used for wrapping #!td and #!th blocks, either for specifying row
attributes or better visual grouping. (since 0.12)

Available Processors 2

#!table
Can optionally be used for wrapping #!tr, #!td and #!th blocks, for specifying table
attributes. One current limitation however is that tables cannot be nested. (since 0.12)
See WikiHtml for example usage and more details about these processors.

Other Markups
#!rst Trac support for Restructured Text. See WikiRestructuredText.
#!textile Supported if ?Textile is installed. See ?a Textile reference.

Code Highlighting Support
#!c

#!cpp (C++)
#!python

#!perl

#!ruby

#!php

#!asp

#!java

#!js (Javascript)
#!sql

#!xml (XML or
HTML)
#!sh (Bourne/Bash
shell)
etc.

Trac includes processors to provide inline syntax highlighting for source code in various
languages.

Trac relies on ?Pygments for syntax coloring.

See TracSyntaxColoring for information about which languages are supported and how
to enable support for more languages.

Since 1.1.2 the default, coding highlighting and MIME-type processors support the argument lineno for
adding line numbering to the code block. When a value is specified, as in lineno=3, the numbering will start
at the specified value. When used in combination with the lineno argument, the marks argument is also
supported for highlighting lines. A single line number, set of line numbers and range of line numbers are
allowed. For example, marks=3, marks=3-6, marks=3,5,7 and marks=3-5,7 are all allowed. The specified
values are relative to the numbered lines, so if lineno=2 is specified to start the line numbering at 2, marks=2
will result in the first line being highlighted.

Using the MIME type as processor, it is possible to syntax-highlight the same languages that are supported
when browsing source code.

MIME Type Processors
Some examples:

{{{#!text/html
<h1>text</h1>
}}}

The result will be syntax highlighted HTML code:

text

The same is valid for all other mime types supported.

{{{#!diff
--- Version 55
+++ Version 56
@@ -115,8 +115,9 @@
 name='TracHelloWorld', version='1.0',
 packages=find_packages(exclude=['*.tests*']),
- entry_points = """
- [trac.plugins]
- helloworld = myplugs.helloworld

Available Processors 3

http://cheeseshop.python.org/pypi/textile
http://www.textism.com/tools/textile/
http://pygments.org

- """,
+ entry_points = {
+ 'trac.plugins': [
+ 'helloworld = myplugs.helloworld',
+],
+ },
)
}}}

#!diff has a particularly nice renderer:

Version

115 115 name='TracHelloWorld', version='1.0',
116 116 packages=find_packages(exclude=['*.tests*']),
117 entry_points = """
118 [trac.plugins]
119 helloworld = myplugs.helloworld
120 """,

117 entry_points = {
118 'trac.plugins': [
119 'helloworld = myplugs.helloworld',
120],
121 },

121 122)

•

Line numbers can be added to code blocks and lines can be highlighted (since 1.1.2).

{{{#!python lineno=3 marks=3,9-10,16
def expand_markup(stream, ctxt=None):
 """A Genshi stream filter for expanding `genshi.Markup` events.

 Note: Expansion may not be possible if the fragment is badly
 formed, or partial.
 """
 for event in stream:
 if isinstance(event[1], Markup):
 try:
 for subevent in HTML(event[1]):
 yield subevent
 except ParseError:
 yield event
 else:
 yield event
}}}

Line
3 def expand_markup(stream, ctxt=None):
4 """A Genshi stream filter for expanding `genshi.Markup` events.
5

 Version 4

6 Note: Expansion may not be possible if the fragment is badly
7 formed, or partial.
8 """
9 for event in stream:
10 if isinstance(event[1], Markup):
11 try:
12 for subevent in HTML(event[1]):
13 yield subevent
14 except ParseError:
15 yield event
16 else:
17 yield event

For more processor macros developed and/or contributed by users, visit the ?Trac Hacks community site.

Developing processors is no different from Wiki macros. In fact, they work the same way, only the usage
syntax differs. See WikiMacros#DevelopingCustomMacros for more information.

See also: WikiMacros, WikiHtml, WikiRestructuredText, TracSyntaxColoring, WikiFormatting, TracGuide

 Version 5

https://trac-hacks.org

	tmps3skqDwikitopdf

